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Modified Gravity Theories Based on the

Non-Canonical Volume-Form Formalism

D. Benisty, E. Guendelman, A. Kaganovich, E. Nissimov,and S. Pacheva

Abstract We present a concise description of the basic features of gravity-
matter models based on the formalism of non-canonical spacetime volume-
forms in its two versions: (a) the method of non-Riemannian volume-forms
(metric-independent covariant volume elements) and (b) the dynamical space-
time formalism. Among the principal outcomes we briefly discuss: (i) quintessen-
tial universe evolution with a gravity-“inflaton”-assisted suppression in the
“early” universe and, respectively, dynamical generation in the “late” uni-
verse of Higgs spontaneous electroweak gauge symmetry breaking; (ii) uni-
fied description of dark energy and dark matter as manifestations of a single
material entity – a second scalar field “darkon”; (iii)unification of dark en-
ergy and dark matter with diffusive interaction among them; (iv) explicit
derivation of a stable “emergent universe” solution, i.e., a creation without
Big Bang; (v) mechanism for suppression of 5-th force without fine-tuning.
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1 Introduction – Non-Riemannian Volume-Form

Formalism

Extended (modified) gravity theories as alternatives/generalizations of the
standard Einstein General Relativity (for detailed accounts, see Refs. [1]-[4])
are being widely studied in the last decade or so due to pressing motiva-
tion from cosmology (problems of dark energy and dark matter), quantum
field theory in curved spacetime (renormalization in higher loops) and string
theory (low-energy effective field theories).

A broad class of actively developed modified/extended gravitational the-
ories is based on employing alternative non-Riemannian spacetime volume-
forms (metric-independent generally covariant volume elements) in the per-
tinent Lagrangian actions instead of the canonical Riemannian one given
by the square-root of the determinant of the Riemannian metric (originally
proposed in [5, 6], for a concise geometric formulation, see [7, 8]). A charac-
teristic feature of these extended gravitational theories is that when starting
in the first-order (Palatini) formalism the non-Riemannian volume-forms are
almost pure-gauge degrees of freedom, i.e. they do not introduce any addi-
tional propagating gravitational degrees of freedom except for few discrete
degrees of freedom appearing as arbitrary integration constants (for a canon-
ical Hamiltonian treatment, see Appendices A in Refs.[8, 9]).

Let us recall that volume-forms in integrals over differentiable manifolds
(not necessarily Riemannian one, so no metric is needed) are given by non-
singular maximal rank differential forms ω:

∫

M
ω
(

. . .
)

=

∫

M
dxD Ω

(

. . .
)

,

ω =
1

D!
ωµ1...µD

dxµ1 ∧ . . . ∧ dxµD , ωµ1...µD
= −εµ1...µD

Ω , (1)

(our conventions for the alternating symbols εµ1,...,µD and εµ1,...,µD
are:

ε01...D−1 = 1 and ε01...D−1 = −1). The volume element density (integration
measure density) Ω transforms as scalar density under general coordinate
reparametrizations.

In standard generally-covariant theories (with action S =
∫

dDx
√−gL) the

Riemannian spacetime volume-form is defined through the “D-bein” (frame-
bundle) canonical one-forms eA = eAµ dx

µ (A = 0, . . . , D − 1):

ω = e0 ∧ . . . ∧ eD−1 = det ‖eAµ ‖ dxµ1 ∧ . . . ∧ dxµD

−→ Ω = det ‖eAµ ‖ dDx =
√

− det ‖gµν‖ dDx . (2)

Instead of
√−gdDx we can employ another alternative non-Riemannian

volume element as in (1) given by a non-singular exactD-form ω = dB where:
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B =
1

(D − 1)!
Bµ1...µD−1

dxµ1 ∧ . . . ∧ dxµ−1

−→ Ω ≡ Φ(B) =
1

(D − 1)!
εµ1...µD ∂µ1

Bµ2...µD
. (3)

In other words, the non-Riemannian volume element density is defined in
terms of the dual field-strength scalar density of an auxiliary rank D − 1
tensor gauge field Bµ1...µD−1

.
The plan of exposition is as follows. In Section 2 we describe in some

detail the construction and the main properties of extended gravity mod-
els, based on the formalism of non-Riemannian volume elements, coupled
to a scalar “inflaton” field driving the cosmological evolution and a second
scalar “darkon” field responsible for the unification of dark energy and dark
matter, as well as coupled to the bosonic sector of the standard electorweak
particle model, thus exhibiting a gravity-assisted dynamical generation of the
Higgs electorweak spontaneous symmetry breaking in the post-inflationary
universe. In particular, we find an “emergent- universe” cosmological solution
without Big-Bang singularity (on classical level).

Further, in Section 3 we briefly present an alternative mechanism of dark
energy - dark matter unification with diffusive interaction among them based
on the formalism of “dynamical spacetime” [10, 11]. Section 4 provides a
short discussion of the principal new features which arise upon inclusion of
fermionic fields in modified gravity models based on the formalism of non-
canonical spacetime volume elements as well as on the requirement of global
scale invariance, first of all – a plausible solution of the problem of “fifth
force” without fine-tuning [12, 13]. The last Section contains our conclusions.

2 Modified Gravity-Matter Models with

Non-Riemannian Volume-Forms – Cosmological

Implications

To illustrate the main interesting properties of the new class of extended
gravity-matter models based on the non-Riemannian volume-form formal-
ism we will consider modified gravity in the Palatini formalism coupled in
a non-standard way via non-Riemannian volume elements to [9, 14, 15]: (i)
scalar “inflaton” field ϕ; (ii) a second scalar “darkon” field u; (iii) the bosonic
fields of the standard electroweak particle model – σ ≡ (σa) being a complex
SU(2)×U(1) iso-doublet Higgs-like scalar, and the SU(2)×U(1) gauge fields
Aµ,Bµ.

The “inflaton” ϕ apart from driving the cosmological evolution triggers
suppression, respectively, generation of the electroweak (Higgs) spontaneous
symmetry breaking in the “early”, respectively, in the “late” universe. The
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“darkon” u is responsible for the unified description of dark energy and dark
matter in the “late” universe.

The corresponding action reads (for simplicity we use units with the New-
ton constant GN = 1/16π):

S =

∫

d4xΦ1(A)
[

R+ L(1)(ϕ, σ)
]

+

∫

d4xΦ2(B)
[

L(2)(ϕ,A,B) + Φ4(H)√−g

]

−
∫

d4x
(√−g + Φ3(C)

)1

2
gµν∂µu∂νu . (4)

Here the following notations are used:
(i) Φ1(A), Φ2(B), Φ3(C) are three independent non-Riemannian volume

elements as in (3) for D = 4; Φ4(H) is again of the form (3) for D = 4 and
it is needed for consistency of (4).

(ii)The scalar curvature R in Palatini formalism is R = gµνRµν(Γ ), where
the Ricci tensor is a function of the affine connection Γ λ

µν apriori independent
of gµν .

(iii) The matter field Lagrangians are:

L(1)(ϕ, σ) ≡ −1

2
gµν∂µϕ∂νϕ− f1e

−αϕ

−gµν(∇µσ)
∗
a∇νσa − λ

4

(

(σa)
∗σa − µ2

)2
, (5)

L(2)(ϕ,A,B) = − b

2
e−αϕgµν∂µϕ∂νϕ+ f2e

−2αϕ − 1

4g2
F 2(A)− 1

4g′ 2
F 2(B) ,(6)

where α, f1, f2 are dimensionful positive parameters, whereas b is a dimen-
sionless one (b is needed to obtain a stable “emergent” universe solution, see
below (25). F 2(A) and F 2(B) in (6) are the squares of the field-strengths of
the electroweak gauge fields, and the last term in (5) is of the same form as
the standard Higgs potential.

Let us note that the form of the “inflaton” part of the action (4) is fixed
by the requirement of invariance under global Weyl-scale transformations:

gµν → λgµν , Γµ
νλ → Γµ

νλ , ϕ → ϕ+
1

α
lnλ ,

Aµνκ → λAµνκ , Bµνκ → λ2Bµνκ , Hµνκ → Hµνκ . (7)

Scale invariance played an important role in the original papers on the non-
canonical volume-form formalism where also fermions were included [6] (see
also Secton 3 below).
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The equations of motion of the initial action (4) w.r.t. auxiliary tensor
gauge fields Aµνλ, Bµνλ, Cµνλ and Hµνλ yield the following algebraic con-
straints:

R+ L(1) = M1 = const , L(2) +
Φ4(H)√−g

= −M2 = const ,

−1

2
gµν∂µu∂νu = M0 = const ,

Φ2(B)√−g
≡ χ2 = const , (8)

where M0,M1,M2 are arbitrary dimensionful and χ2 an arbitrary dimension-
less integration constants.

The equations of motion of (4) w.r.t. affine connection Γµ
νλ yield a solution

for Γµ
νλ as a Levi-Civita connection Γµ

νλ = Γµ
νλ(ḡ) =

1
2 ḡ

µκ (∂ν ḡλκ + ∂λḡνκ − ∂κḡνλ)

w.r.t. to the a Weyl-rescaled metric ḡµν = χ1gµν , χ1 ≡ Φ1(A)√
−g

.

The passage to the “Einstein-frame” (EF) is accomplished by a Weyl-
conformal transformation to ḡµν upon using relations (8), so that the EF
action with a canonical Hilbert-Einstein gravity part w.r.t. ḡµν and with the

canonical Riemannian volume element density
√

det || − ḡµν || reads:

SEF =

∫

d4x
√−ḡ

[

R(ḡ) + LEF

]

, (9)

and where the EF matter Lagrangian turns out to be of a quadratic “k-
essence” type [16]-[19] w.r.t. both the “inflaton” ϕ and “darkon” u fields:

LEF = X̄ − Ȳ
[

f1e
−αϕ +

λ

4

(

(σa)
∗σa − µ2

)2
+M1 − χ2be

−αϕX̄
]

+Ȳ 2
[

χ2(f2e
−2αϕ +M2) +M0

]

+ L[σ,A,B] , (10)

with L[σ,A,B] ≡ −ḡµν(∇µσa)
∗∇νσa − χ2

4g2 F̄
2(A) − χ2

4g′ 2 F̄
2(B). In (10) all

quantities defined in terms of the EFmetric ḡµν are indicated by an upper bar,
and the following short-hand notations are used: X̄ ≡ − 1

2 ḡ
µν∂µϕ∂νϕ , Ȳ ≡

− 1
2 ḡ

µν∂µu∂νu.
From (10) we deduce the following full effective scalar potential:

Ueff

(

ϕ, σ
)

=

(

f1e
−αϕ + λ

4

(

(σa)
∗σa − µ2

)2
+M1

)2

4
[

χ2(f2e−2αϕ +M2) +M0

] (11)

As discussed in Refs.[14, 15] Ueff(ϕ, σ) (11) has few remarkable properties.
First, Ueff(ϕ, σ) possesses two infinitely large flat regions as function of ϕ
when σ is fixed:

(a) (-) flat “inflaton” region for large negative values of ϕ corresponding
to the evolution of the “early” universe;
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(b) (+) flat “inflaton” region for large positive values of ϕ with σ fixed
corresponding to the evolution of the “late” universe”.

This is graphically depicted on Fig.1.

-10 -5 5 10
Φ

0.2

0.4

0.6

0.8

Ueff

Fig. 1 Qualitative shape of the effective scalar potential Ueff (11) as function of the
“inflaton” ϕ for M1 > 0 and fixed Higgs-like σ

In the (-) flat “inflaton” region, i.e., in the “early” universe the effective
scalar field potential (11) reduces to (an aproximately) constant value

Ueff

(

ϕ, σ
)

≃ U(−) =
f2
1

4χ2 f2
(12)

Thus, there is no σ-field potential and, therefore, no electroweak spontaneous
breakdown in the “early” universe.

On the other hand, in the (+) flat “inflaton” region, i.e., in the “late”
universe the effective scalar field potential becomes:

Ueff

(

ϕ, σ
)

≃ U(+)(σ) =

(

λ
4

(

(σa)
∗σa − µ2

)2
+M1

)2

4
(

χ2M2 +M0

) , (13)

which obviously yields nontrivial vacuum for the Higgs-like field |σvac| = µ.
Therefore, in the “late” universe we have the standard spontaneous break-
down of electroweak SU(2)×U(1) gauge symmetry. Moreover, at the Higgs
vacuum we obtain from (13) a dynamically generated cosmological constant
Λ(+) of the “late” Universe:

U(+)(µ) ≡ 2Λ(+) =
M2

1

4
(

χ2M2 +M0

) . (14)
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If we identify the integration constants with the fundamental scales in Nature
as M0,1 ∼ M4

EW and M2 ∼ M4
Pl, where where MPl is the Planck mass

scale and MEW ∼ 10−16MPl is the electroweak mass scale, then Λ(+) ∼
M8

EW /M4
Pl ∼ 10−120M4

Pl , which is the right order of magnitude for the
present epoch’s vacuum energy density as already realized in [20].

On the other hand, if we take the order of magnitude of the coupling
constants in the effective potential (11) f1 ∼ f2 ∼ (10−2MPl)

4, then the
order of magnitude of the vacuum energy density of the “early” universe (12)
becomes:

U(−) ∼ f2
1 /f2 ∼ 10−8M4

Pl , (15)

which conforms to the Planck Collaboration data [21, 22] implying the energy
scale of inflation of order 10−2MPl.

Now, let us perform FLRW reduction of the EF action (9). i.e., restricting
the metric ḡµν to the FLRW form ds2 = ḡµνdx

µdxν = −dt2+a2(t)dx2. Thus
we obtain in the “late” universe, i.e., for large positive “inflaton” ϕ values
the following results for the density, pressure, the Friedmann scale factor (the
solution for a(t) below first appeared in [23]) and the “inflaton” velocity:

ρ =
M2

1

4(χ2M2 +M0)
+

πu

a3

[ M1

χ2M2 +M0

]
1

2

+O
(π2

u

a6
)

, (16)

p = − M2
1

4(χ2M2 +M0)
+ O

(π2
u

a6
)

, (17)

a(t) ≃
( C0

2Λ(+)

)1/3

sinh2/3
(

√

3

4
Λ(+) t

)

, (18)

.
ϕ≃ const sinh−2

(

√

3

4
Λ(+) t

)

, (19)

where πu is the conserved “darkon” canonical momentum, Λ(+) is as in (14)

and C0 ≡ πu

√

M1(χ2M2 +M0)−1.
Relations (16)-(17) straightforwardly show that in the “late” universe we

have explicit unification of dark energy (given by the dynamically generated
cosmological constant (14) – first constant terms on the r.h.sides in (16) and
(17), and dark matter given as a “dust” fluid contribution – second term
O(a−3) on the r.h.s. of (16).

A further interesting property under consideration is the existence of
a stable “emergent” universe solution – a creation without Big Bang (cf.
Refs.[25, 26]). It is characterized by the condition on the Hubble parameter
H :

H = 0 → a(t) = a0 = const , ρ+ 3p = 0 ,

K

a20
=

1

6
ρ (= const) , (20)
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and the “inflaton” is on the (−) flat region (large negative values of ϕ). Then
relations (20) together with the “inflaton” and “darkon” equations of motion
imply that also “inflaton” velocity

.
ϕ= const and the constant density and

pressure read:

ρ ≃ −3χ2b
2

16f2

.
ϕ
4
+
1

2

.
ϕ
2
(

1 +
bf1
2f2

)

+
f2
1

4χ2f2
, (21)

p ≃ −χ2b
2

16f2

.
ϕ
4
+
1

2

.
ϕ
2
(

1 +
bf1
2f2

)

− f2
1

4χ2f2
. (22)

The truncated Friedmann Eqs.(20) yield exact solutions for the constant
“inflaton” velocity

.
ϕ0 and Friedmann factor a0:

.
ϕ
2

0=
8f2

3χ2b2

[

1 +
bf1
2f2

−
√

(

1 +
bf1
2f2

)2 − 3b2f2
1

16f2
2

]

, (23)

and a20 = 6K/ρ0 where:

ρ0 =
f2
1

2χ2f2
− 1

2

.
ϕ
2

0

(

1 +
bf1
2f2

)

. (24)

Studying perturbation a → a + δa(t) of the “emergent” universe condition

(20) we obtain a harmonic oscillator equation for δa(t) (here
.
ϕ
2

0 as in (23),
and ρ0 as in (24)):

δ
..
a +ω2δa = 0 ,

ω2 ≡ ρ0
6

[

3
1
2 (1 + bf1/2f2)−

.
ϕ
2

0 χ2b
2/8f2

.
ϕ
2

0 3χ2b2/8f2 − 1
2 (1 + bf1/2f2)

− 1
]

> 0 (25)

for −8(1− 1
2

√
3) f2f1 < b < − f2

f1
.

The non-Riemannian volume-form formalism was also successfully applied
to propose an qualitatively new mechanism for a dynamical spontaneous
breaking of supersymmetry in supergravity by constructing modified formu-
lation of standard minimal N = 1 supergravity as well as of anti-de Sitter
supergravity in terms of a non-Riemannian volume elements [7, 24]. This
naturally triggers the appearance of a dynamically generated cosmological
constant as an arbitrary integration constant which signifies dynamical spon-
taneous supersymmetry breakdown. The same formalism applied to anti-de
Sitter supergravity allows us to appropriately choose the above mentioned
arbitrary integration constant so as to obtain simultaneously a very small
effective observable cosmological constant as well as a large physical gravitino
mass as required by modern cosmological scenarios for slowly expanding uni-
verse of the present epoch [27, 28, 29].
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3 Dynamical spacetime formulation

Let us now observe that the non-Riemannian volume element density Ω =
Φ(B) (3) on a Riemannian manifold can be rewritten using Hodge dual-
ity (here D = 4) in terms of a vector field χµ = 1

3!
1√
−g

εµνκλBνκλ so that

Ω becomes Ω(χ) = ∂µ
(√−gχµ

)

, i.e. it is a non-canonical volume element
density different from

√−g, but involving the metric. It can be represented
alternatively through a Lagrangian multiplier action term yielding covariant
conservation of a specific energy-momentum tensor of the form T µν = gµνL:

S(χ) =

∫

d4x
√−g χµ;νT µν =

∫

d4x∂µ
(√−gχµ

)(

−L
)

, (26)

where χµ;ν = ∂νχµ − Γ λ
µνχλ.

The vector field χµ is called “dynamical space time vector” , because of
the energy density of T 00 is a canonically conjugated momentum w.r.t. χ0,
which is what we expected from a dynamical time.

In what follows we will briefly consider a new class of gravity-matter the-
ories based on the ordinary Riemannian volume element density

√−g but
involving action terms of the form (26) where now T µν is of more general
form than T µν = gµνL. This new formalism is called “dynamical spacetime
formalism” [10, 11] due to the above remark on χ0.

Ref.[30] describes a unification between dark energy and dark matter by
introducing a quintessential scalar field in addition to the dynamical time
action. The total Lagrangian reads:

L =
1

2
R+ χµ;νT µν − 1

2
gαβφ,αφ,β − V (φ), (27)

with energy-momentum tensor T µν = − 1
2φ

,µφ,ν . From the variation of the
Lagrangian term χµ;νT µν with respect to the vector field χµ, the covariant
conservation of the energy-momentum tensor ∇µT µν = 0 is implemented.
The latter within the FLRW framework forces the kinetic term of the scalar
field to behave as a dark matter component:

∇µT µν = 0 ⇒ φ̇2 =
2Ωm0

a3
. (28)

where Ωm0 is an integration constant. The variation with respect to the scalar
field φ yields a current:

−V ′(φ) = ∇µj
µ, jµ =

1

2
φ,ν(χ

µ;ν + χν;µ) + φ,µ (29)

For constant potential V (φ) = ΩΛ = const the current is covariantly con-
served.
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In the FLRW setting, where the dynamical time ansatz introduces only a
time component χµ = (χ0, 0, 0, 0), the variation (29) gives:

χ̇0 − 1 = ξ a−3/2, (30)

where ξ is an integration constant. Accordingly, the FLRW energy density
and pressure read:

ρ =

(

χ̇0 −
1

2

)

φ̇2 + V, p =
1

2
φ̇2(χ̇0 − 1)− V. (31)

Plugging the relations (28,30) into the density and the pressure terms (31)
yields the following simple form of the latter:

ρ = ΩΛ +
ξΩm0

a9/2
+

Ωm0

a3
, p = −ΩΛ +

ξΩm0

2 a9/2
. (32)

In (32) there are 3 components for the ”dark fluid”: dark energy with
ωΛ = −1, dark matter with ωm = 0 and an additional equation of state
ωξ = 1/2. For non-vanishing and negative ξ the additional part introduces a
minimal scale parameter, which avoids singularities. If the dynamical time is
equivalent to the cosmic time χ0 = t, we obtain ξ = 0 from Eq.(30), where-
upon the density and the pressure terms (32) coincide with those from the
ΛCDM model precisely. The additional part (for ξ 6= 0) fits more to the late
time accelerated expansion data, as observed in Ref. [31].

Ref. [32] shows that with higher dimensions, the solution derived from the
Lagrangian (27) describes inflation, where the total volume oscillates and the
original scale parameter exponentially grows.

The dynamical spacetime Lagrangian can be generalized to yield a diffusive
energy-momentum tensor. Ref. [33] shows that the diffusion equation has the
form:

∇µT µν = 3σjν , jµ;µ = 0, (33)

where σ is the diffusion coefficient and jµ is a current source. The covariant
conservation of the current source indicates the conservation of the number
of the particles. By introducing the vector field χµ in a different part of the
Lagrangian:

L(χ,A) = χµ;νT µν +
σ

2
(χµ + ∂µA)

2, (34)

the energy-momentum tensor T µν gets a diffusive source. From a variation
with respect to the dynamical space time vector field χµ we obtain:

∇νT µν = σ(χµ + ∂µA) = fµ, (35)

a current source fµ = σ(χµ + ∂µA) for the energy-momentum tensor. From
the variation with respect to the new scalar A, a covariant conservation of
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the current emerges fµ
;µ = 0. The latter relations correspond to the diffusion

equation (33).
Refs.[35, 36, 37, 38] study the cosmological solution using the energy-

momentum tensor T µν = − 1
2g

µνφ,λφλ. The total Lagrangian reads:

L =
1

2
R− 1

2
gαβφ,αφ,β − V (φ) + χµ;νT µν +

σ

2
(χµ + ∂µA)

2. (36)

The FLRW solution unifies the dark energy and the dark matter originating
from one scalar field with possible diffusion interaction. Ref.[34] investigates
more general energy-momentum tensor combinations and shows that asymp-
totically all of the combinations yield ΛCDM model as a stable fixed point.

4 Scale Invariance, Fifth Force and Fermionic Matter

The originally proposed theory with two volume element densities (integra-
tion measure densities) [5, 6], where at least one of them was a non-canonical
one and short-termed “two-measure theory” (TMT), has a number of remark-
able properties if fermions are included in a self-consistent way [6]. In this
case, the constraint that arises in the TMT models in the Palatini formalism
can be represented as an equation for χ ≡ Φ/

√−g, in which the left side
has an order of the vacuum energy density, and the right side (in the case of
non-relativistic fermions) is proportional to the fermion density. Moreover, it
turns out that even cold fermions have a (non-canonical) pressure Pnoncan

f

and the corresponding contribution to the energy-momentum tensor has the
structure of a cosmological constant term which is proportional to the fermion
density. The remarkable fact is that the right hand side of the constraint co-
incide with Pnoncan

f . This allows us to construct a cosmological model[39] of
the late universe in which dark energy is generated by a gas of non-relativistic
neutrinos without the need to introduce into the model a specially designed
scalar field.

In models with a scalar field, the requirement of scale invariance of the ini-
tial action[5] plays a very constructive role. It allows to construct a model[40]
where without fine tuning we have realized: absence of initial singularity of
the curvature; k-essence; inflation with graceful exit to zero cosmological con-
stant.

Of particular interest are scale invariant models in which both fermions
and a dilaton scalar field φ are present. Then it turns out that the Yukawa
coupling of fermions to φ is proportional to Pnoncan

f . As a result, it follows
from the constraint, that in all cases when fermions are in states which con-
stitute a regular barionic matter, the Yukawa coupling of fermions to dilaton
has an order of ratio of the vacuum energy density to the fermion energy
density[12]. Thus, the theory provides a solution of the 5-th force problem
without any fine tuning or a special design of the model. Besides, in the
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described states, the regular Enstein’s equations are reproduced. In the op-
posite case, when fermions are very deluted, e.g. in the model of the late
Universe filled with a cold neutrino gas, the neutrino dark energy appears in
such a way that the dilaton φ dynamics is closely correlated with that of the
neutrino gas[12].

A scale invariant model containing a dilaton φ and dust (as a model of
matter)[13] possesses similar features. The dilaton to matter coupling ”con-
stant” f appears to be dependent of the matter density. In normal conditions,
i.e. when the matter energy density is many orders of magnitude larger than
the dilaton contribution to the dark energy density, f becomes less than the
ratio of the ”mass of the vacuum” in the volume occupied by the matter to
the Planck mass. The model yields this kind of ”Archimedes law” without
any especial (intended for this) choice of the underlying action and without
fine tuning of the parameters. The model not only explains why all attempts
to discover a scalar force correction to Newtonian gravity were unsuccessful
so far but also predicts that in the near future there is no chance to detect
such corrections in the astronomical measurements as well as in the specially
designed fifth force experiments on intermediate, short (like millimeter) and
even ultrashort (a few nanometer) ranges. This prediction is alternative to
predictions of other known models.

More recently other authors have rediscovered the important role of scale
invariance in the avoidance of a 5-th force [44]. We should point out that our
original work [12, 13] on avoidance of the 5-th force through scale invariance
symmetry preceeds that of Ref.[44] by a substantial number of years.

5 Conclusions

In the present paper we describe in some details the principal physically in-
teresting features of a specific class on extended (modified) gravitational the-
ories beyong the standard Einstein’s general relativity. They are constructed
in terms of non-Riemannian spacetime volume forms (metric-independent
non-canonical volume elements). An important role is also being played by
the requirement of global scale invariance. We present a modified gravity-
matter model where gravity is coupled in a non-canonical way to two scalar
fields (“inflaton” and “darkon”) as well as to the bosonic sector of the stan-
dard electroweak model of elementary particle physics. The “inflaton” scalar
field triggers a quintessential inflationary evolution of the Universe where
all energy scales are determined dynamically through free integration con-
stants arising due to the modified gravitational dynamics because of the non-
Riemannian volume elements. The “darkon” scalar field on its part creates
through its dynamics a unified description of dark energy and dark mat-
ter. A particularly notable feature is the gravity-”inflaton”-assisted dynam-
ical generation of Higgs electroweak spontaneous symmetry breaking in the
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post-inflationary epoch and its suppression in the ealy-universe stage. Under
special initial condition on the Hubble parameter we find (on classical level)
an “emergent universe” solution describing early universe evolution without
spacetime singularities (no “Big Bang”).

Furthermore, we have briefly discussed a parallel alternative non-canonical
spacetime volume element approach based on the concept of “dynamical
spacetime” and have demonstrated the appearance of unified description of
dark energy and dark matter with a diffusive interaction among them. Finally
we briefly outlined, based on our original work [12, 13], how the formalism
of non-canonical volume elements in modified gravity-matter models with
fermions provides a resolution of the problem of “fifth force” without any
fine tunings.

In the above constructions we have employed the first-order (Palatini)
formalism in the initial gravity actions. Further physically interesting features
are obtained when combining the non-Riemannian spacetime volume element
formalism with the second order (metric) gravity formalism. In particular, in
the latter case it was recently shown [41] that starting with a pure modified
gravity in terms of several non-Riemannian volume elements and without
any initial matter fields one creates dynamically (in the “Einstein frame”) a
canonical scalar field with a non-trivial inflationary potential generalizing the
classical Starobinsky potential [42] and yielding results for the cosmological
observables (scalar power spectral index and the tensor-to-scalar ratio) fitting
very well to the avaible observational data [43].
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